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Abstract 

Natural killer (NK) cells are lymphocytes of the innate immune system that are critical in 

host defense and immune regulation. They are activated or inhibited through the ligation of 

germline-encoded receptors and are involved in mediating cytotoxicity, in producing 

cytokines and in providing co-stimulation to cells of the adaptive immune system. 

NK cells have receptors that recognize Class I major histocompatibility complex (MHC), and 

their function is tightly integrated with other cells in the innate and adaptive immune 

systems. 

Effective immunity requires coordinated activation of innate and adaptive immune 

responses. NK cells are principal mediators of innate immunity, able to respond to challenge 

quickly and generally without prior activation. The most acknowledged functions of NK 

cells are their cytotoxic potential and their ability to release large amounts of cytokines, 

especially IFN-c. 

The activities of NK cells are regulated by the interaction of various receptors expressed on 

their surfaces with cell surface ligands. While the role of NK cells in controlling tumor 

activity is relatively clear.  

In this article, I discus the Regulation of effector cells by NK cells, cytotoxicity effect, and  in 

producing cytokines, Natural killer cells and immunoregulation, mechanisms of action of 

NK cells, NK cells and adaptive immunity; moreover, therapeutic applications of NK cells in 

cancer and autoimmunity.  
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1. Introduction 

 
Natural killer (NK) cells the first line of innate defense against viral infection, and they rapidly 
and directly kill infected cells in the absence of antigen presentation and recognition. In 
response to stimuli from diverse sources, including infections, cytokines, stresses and other 
immune cells, NK cells exert the following distinct functions: (i) secrete perforin and granzyme 
to directly kill target cells; (ii) release cytokines to regulate immune responses; and (iii) couple 
death-inducing receptors to target cells and induce apoptosis (1),(2). NK-deficient individuals 
are highly susceptible to a variety of viral infections, illustrating the key role of NK cells in the 
defense against viral infection (3). Natural killer (NK) cells are a heterogeneous group of 
immune cells that share several common identifying properties. Morphologically, NK cells are 
large granular lymphocytes with abundant cytoplasm with azurophilic cytoplasmic 
granules.(4). Cell surface markers detected by flowcytometry and immunohistochemistry are 
now standard to identify NK cells, which are defined by the presence of an isoform of the 
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neural cell adhesion molecule, CD56, and the absence of CD3, the pan-T-cell marker (5).With 
these phenotypic criteria, NK cells are present in significant numbers, comprising up to 29% of 
circulating lymphocytes (6),  and 5% to 17% of mononuclear cells in hematolymphoid organs 
(7).Phenotypic NK-cell subsets have differing functions and anatomic distributions. For 
example, NK cells can be broadly divided into CD56bright and CD56dim subsets. Briefly, 
CD56bright NK cells have low resting cytotoxic activity, are preferentially found in secondary 
lymphoid tissue, and may represent a precursor to the more cytotoxic CD56dim NK cells that 
are found circulating in the peripheral blood (7). Subsets of NK cells can also express CD16, a 
low-affinity Fc immunoglobulin G receptor that allows NK cells to participate in antibody-
dependent cellular toxicity (8).  Other less-defined and smaller NK-cell subsets have been 
described, and as new surface markers are discovered, the definition and functional 
characteristics of NK cells will be further refined. NK cells were first discovered to recognize 
and lyse cells lacking major histocompatibility complex (MHC) without prior sensitization 
(9),(10). Later, NK cells were shown to lack germline T-cell receptor gene rearrangements and 
antigen-specific cell surface receptors. However, viruses have evolved various strategies to 
evade the NK cell recognition and destruction during acute and persistent viral infections.An 
array of activating or inhibitory receptors on the surface of NK cells recognize the ligands of 
target cells, and the relative expression of these receptors and the outcome of their signal 
cascades determines NK cell activation and cytotoxicity (11). Numerous activating or inhibitory 
NK cell receptors have been identified in NK cells; the activating receptors recruit adaptors that 
contain the intracellular immunoreceptor tyrosine-based activating motif (ITAM), whereas the 
inhibitory receptors contain the immunoreceptor tyrosine-based inhibitory motifs (ITIM), 
consequently, they transduce activating or inhibitory signal cascades, respectively (12). A 
cluster of inhibitory receptors specifically binds to major histocompatibility complex (MHC) 
class I molecules, such as the inhibitory Ly49s family members in mice, the killer-cell 
immunoglobulin-like receptors (KIR) in humans, and the heterodimeric CD94-NKG2A receptor 
in both species that recognizes non-classic MHC class I molecules. These molecules allow NK 
cells to be regulated by self-MHC recognition and restrain the NK cell hyperactivity (12). 
Therefore, the NK cells preferentially kill the infected cells in which the surface expression of 
MHC molecules and the antigen presentation are inhibited by viruses (13). Four types of 
activating NK receptors recognize the different ligands: CD16 enables NK cells to exert 
antibody-dependent cell cytotoxicity; natural killer group 2 member D (NKG2D) recognizes a 
family of stress-induced ligands; natural cytotoxicity receptors (NCRs) are able to recognize 
pathogen-derived or induced ligands and tumor ligands; and the other receptors, including 2B4 
(CD244), NKG2C, DNAM1 (CD226) and NKp80, recognize self-molecules (11). All receptors 
recognize a variety of ligands on the surface of target cells, and the major ligands include 
atypical major MHC class I, MHC class I-related chain A (MICA), MHC class I-related chain B 
(MICB), UL16 binding proteins 1–6 (ULBP1–ULBP6) and some viral proteins (12),(14). Upon the 
association between receptors and ligands, the receptors activate Syk (spleen tyrosine kinase) or 
ZAP70 (zeta-chain associated protein kinase 70 kDa) tyrosine kinases through the adapters 
DAP12, Fc"RI  (also known as FcR ) or CD3, or they activate phosphatidylinositol-3-kinase 
(PI3K) through the adaptor DAP10 (12). During their development and maturation, NK cell 
receptors recognize self-ligands to obtain self-tolerance for normal and healthy cells through the 
processes of selection and education (15),(16). During viral infection, the balance of NK 
activating or inhibitory receptors shifts toward NK cell activation and increased cytotoxicity, 
whereas viruses employ complex mechanisms to reverse NK cell activation and maintain NK 
cell quiescence. Downregulation of MHC class I molecules by viruses prevents antigen 
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presentation and reduces the immune response; however, it increases the susceptibility to NK 
cell recognition and destruction (13). Viruses possess more effective and distinct strategies to 
escape from NK cell immunity, including stimulating the inhibitory receptors and disrupting 
the activating receptors. Several viruses are able to inhibit NK cell activation through inhibitory 
receptors. Murine cytomegalovirus (MCMV) encoded MHC-I-like m157 in infected cell surfaces 
acts as a ligand of inhibitory Ly49C receptor, and their binding hampers NK cell activation. This 
outcome results in the evasion from NK cell clearance during MCMV infection in mice (17),(18). 
In humans, human leukocyte antigen (HLA)-C is capable of inhibiting NK cell cytotoxicity via 
inhibitory KIR receptors in human immunodeficiency virus type 1 (HIV-1) infection (19). HLA-
C presents HIV p24 epitopes to KIR receptors and engages KIRs on NK cells; therefore, it 
inhibits NK cell function (20). Additionally, the epitopes of human cytomegalovirus (HCMV) 
glycoprotein UL40 are presented by HLA-E to NK cells via CD94/NKG2A receptor, by which 
protects the infected cells from NK cell killing (21). The natural selection of variations provides 
a novel viral escape through inhibitory NK cell receptors (21),(22).  Here, we review the 
impairment of NK cell-activating receptors and ligands by viruses and further discuss the 
unique aspects of viral evasion of NK cell recognition and destruction, which provides novel 
insights on the struggles between NK cells and viruses during persistent viral infection. 
 

2. NK cell functions 
 

NK cells are distinct from T cells or B cells and have distinct morphologic, phenotypic and 
functional properties. As suggested by their name, NK cells occur naturally, i.e., they are part of 
innate immunity and, unlike T cells or B cells, do not require sensitization for the expression of 
their activity. Morphologically, most NK cells are large granular lymphocytes in that they are 
bigger than normal lymphocytes and have more cytoplasm. Phenotypically, NK cells have 
several unique markers on their surface but are most traditionally characterized by being CD3_, 
CD56+. They are distinct from NKT cells which express CD3, rearrange their germline DNA T 
cell receptor genes (though with a limited repertoire) and are reviewed elsewhere (23). NK cell 
functions can be classified in three categories: 

  
3. Cytotoxicity 
 

 NK cells can kill certain virally infected cells and tumor target cells regardless of their MHC 
expression (24). NK cells possess relatively large numbers of cytolytic granules, which are 
secretory lysosomes containing perforin and various granzymes. Upon contact between an NK 
cell and its target, these granules traffic to the contact zone with the susceptible target cell (the 
so-called immunological synapse), and the contents are extruded to effect lysis. Perforin-
dependent cytotoxicity is the major mechanism of NK cell lysis, although NK cells can also kill 
in a perforin-independent manner utilizing FAS ligand, TNF or TNF-related apoptosis-inducing 
ligand (TRAIL), albeit less efficiently and in a slower time kinetic. 
 

4. Cytokine and chemokine secretion 
 
 NK cells are best noted for their ability to produce IFN-g but also produce a number of other 
cytokines and chemokines including TNF-a, GMCSF, IL-5, IL-13, MIP-1 (a and h) and RANTES  
(25),(26),(27).  Killing and cytokine secretion are probably mediated by two different subsets of 
human NK cells characterized by the intensity of expression of CD56 on their surface. 
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5. Contact-dependent cell co-stimulation 
 

NK cells express several costimulatory ligands including CD40L (CD154) and OX40L, which 
allow them to provide a costimulatory signal to T cells or B cells (28),(29). Thus, NK cells may 
serve as a bridge in an interactive loop between innate and adaptive immunity. Dendritic cells 
(DC) stimulate NK cells which then deliver a co-stimulatory signal to T or B cells allowing for 
an optimal immune response. 
 

6. Regulation of NK cell functions 
 

The intrinsic cytotoxic capacity of NK cells raises the question as to why they do not kill 
autologous cells; this observation led to the ‘‘missing self-hypothesis’(30)’ This hypothesis states 
that NK cells are inherently capable of killing autologous cells, but that they are actively 
prohibited from doing so by inhibitory receptors. More specifically, since ‘‘self’’ is defined by 
MHC, the hypothesis states that self-MHC engages inhibitory receptors on the surface of NK 
cells preventing them from delivering a lytic signal. A corollary of this hypothesis is 
NK-susceptible cells either might lack the molecules that ligate NK inhibitory receptors or 
might have molecules that engage NK activating receptors. This hypothesis was substantiated 
by discovery of inhibitory killer cell immunoglobulin receptors (KIR) (31), and several families 
of activating receptors (32). In contrast to T cell or B cell receptors, the specificities of these 
receptors do not require genetic recombination events. The current model for NK cell activation 
and inhibition is one based upon a balance of function between specific activating and 
inhibitory receptors. If the balance favors inhibitory signaling, then intracellular events leading 
to cell function will not progress. If the balance favors activation signals, NK cells can then 
progress through a series of intracellular stages and checkpoints to exert their function (33).  
 

 

7. NK-cell-dependent regulation of DC function 
 

DC is antigen-presenting cells that initiate and regulate immune responses. 
In humans, both immature and mature human DC can induce resting NK-cell activation. 
Indeed, numerous studies have found that DC are capable of activating NK cells (34).  
However, DC–NK cell interactions are not one-sided affair, but rather, involve reciprocal 
interactions whereby NK cells can influence the function of DC and vice versa. That cross-talk 
between NK cells and DC is required for the generation of an appropriate immune response is 
implied by the findings that NK cells are found in close association with DC in both the lymph 
node and in inflamed skin (35),  (36), (37),(38). Furthermore, depletion of NK cells has been 
found to affect both the number and activation state of DC in the lymph nodes (35), (39). Studies 
have attempted to define how activated NK cells influence the function of DC. The ability of 
activated NK cells to lyse immature DC (iDC) has been documented in a number of settings 
(40),(41),(42),(43),(44),(45),(46). NKcell- mediated killing of iDC is proposed to function as an 
editing mechanism. This theory suggests that only mature DC that have appropriate levels of 
MHC and costimulatory molecules, and are thus able to prime an effective immune response, 
will survive an encounter with an activated NK cell. The ability of NK cells to kill 
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iDC, at least in vitro, is limited to a subset of cells expressing CD94/NKG2A, but lacking killer 
Ig-like receptors (47). Therefore, killing of iDC may not be mediated by all NK cells, but is 
potentially limited to a specialised subset of NK cells. The mechanism by which NK cells 
eliminate iDC is another important issue that still requires clarification. Killing of DC in a 
transplantation model (35), and in vitro (44), [42] is dependent on perforin. By contrast, in vivo, 
adoptively transferred iDC are eliminated by NK cells in a TRAIL dependent manner (46). 
Thus, while the hypothesis that NK cells fine-tune immune responses by eliminating iDC is 
intriguing, definitive evidence that this process operates in vivo and how is still lacking. 
 

8. NK cells regulate T-cell priming 

Early studies revealed that NK cells can promote the generation of TH1 responses (48),(49),(50). 

In mice, NK cells are rapidly recruited to lymph nodes following Leishmania major infection 

and are a source of the IFN-g required for the induction of TH1 polarisation (51). A similar 

effect has been observed in humans, where NK-cellderived IFN-g was found to enhance the 

activation of CD4+ T cells (52). Importantly, human tonsilar, but not peripheral NK cells were 

required for the expansion of IFN-g producing CD4+ T cells (52). The specificity observed here 

is due to the fact that the cytokine producing CD56hiCD16 NK-cell subset is enriched in 

secondary lymphoid organs, such as the tonsils. These results reinforce the notion that NK cells 

are not homogeneous, and that the nature of the NK-cell subset involved can profoundly 

influence the outcome of an immune response. The pro-inflammatory cytokines produced by 

NK cells might promote a TH1 response via a number of mechanisms. Naı¨ve T cells require an 

exogenous source of IFN-g for TH1 polarisation, which can be produced by NK cells in vivo 

(51). In addition, NK cells may indirectly promote TH1 polarisation by enhancing the 

maturation of DC. In vitro, NK-cellmediated maturation of DC requires cell–cell contact and the 

production of TNF-a and IFN-g by NK cells (45),(53),(54). The ability of NK cells to activate DC 

may also be essential for the initiation of immune responses to tumours or pathogens that do 

not directly activate DC. Some support for this theory comes from the observation that 

recognition of MHC class I low tumour cells by NK cells activates DC resulting in the induction 

of a CD8+ T-cell response (55). In human and mouse bone marrow transplantation systems, 

donor NK cells have been shown to play a protective role in graft outcome by killing the 

allogeneic recipient antigen-presenting cells responsible for priming alloreactive T cells and 

initiating GVH disease (56). In an allogeneic cardiac graft model, long-term graft survival was 

achieved by inhibiting NK cells in a setting where CD28 co-stimulation was lacking (CD28/ 

mice) (57). Interestingly, neither intervention alone was sufficient to improve graft survival. 

These findings led to the suggestion that NK cells might deliver help to T cells. Thus, after 

infiltrating the grafts, NK cells synthesise cytokines that circumvent the CD28 deficiency and 

provide the critical help required for CD8 T-cell priming. Since these studies were conducted 

using the anti-NK1.1 antibody to remove NK cells, the possibility that the observed effects are 

mediated by other cells carrying this determinant, particularly NKT cells, needs to be taken in 

consideration. In skin graft models, TH2 polarisation can be achieved by the numbers of DC 

that accumulate in the absence of NK-cell activation. In contrast, the regulation of donor DC by 
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blood-borne NK cells recruited in the lymph nodes has been shown to favour a TH1 response 

(35),(58). Thus, in autologous systems, the DC maturation state is crucial in determining 

whether the DC will survive the encounter with NK cells, while TH1 polarisation appears to 

depend mainly on cytokine production. On the other hand, in transplantation settings, NK-cell 

activation following interaction with allogeneic DC seems to occur regardless of DC maturation. 

This is likely due to failure to engage inhibitory NK-cell receptors specific for self-MHC I by the 

allogeneic DC. The duration of DC persistence will then control the strength of the priming and 

the subsequent polarisation of the T-cell response. The impact of NK cells on DC functionality 

during immune responses has been largely inferred from in vitro studies. Perhaps, the best 

evidence that NK cells influence the function of DC in vivo has come from studying MCMV 

infection. Resistance to MCMV in C57BL/6 mice is mediated by Ly49H+ NK cells that recognise 

the virally encoded m157 protein (59),(60). During MCMV infection maintenance of the CD8a 

DC population is dependent on Ly49H+ NK cells (61). A recent report has suggested that the 

ability of Ly49H+ NK cells to maintain splenic DC populations is mediated by an indirect 

mechanism. The report proposes that the Ly49H+ NK-cell-mediated early control of MCMV 

replication in the spleen of resistant mice prevents the release of immunosuppressive levels of 

IFN-ab (62).  Administration of exogenous IFN-a to resistant mice was found to induce loss of 

DC from the spleen, and a slight and very transient delay in the activation of antigen- specific T 

cells (62). Alternatively, it has been proposed that the rapid control of viral replication by 

Ly49H+ NK cells may promote the maintenance of splenic DC by preventing the destruction of 

the splenic architecture (63). In addition to potentially influencing the function of DC, NK cells 

have recently been shown to induce the differentiation of CD14+ monocytes into DC (64). This 

process was found to require the production of GM-CSF by CD56bright NK cells and direct 

cell–cell contact. While the process was proposed to contribute to the maintenance of chronic 

inflammatory diseases, it is conceivable that it could also operate to expand the pool of DC 

during immune responses to pathogens and thereby impact on the outcome of subsequent T-

cell responses. Together the published data provide evidence that NK cells can indirectly 

influence DC-induced T-cell priming, however, evidence that NK cells directly influence the 

functions of DC in vivo remains elusive. 

9. Regulation of effector cells by NK cells 

In addition to their potential role in regulating antigen presentation, NK cells may influence the 

outcome of the immune response by acting directly on effector cells. As mentioned previously, 

activation of naı¨ve T cells is dependent on IFN-g produced by NK cells (51). NK cells have also 

been reported to stimulate autologous CD4+ T cells, an effect that is dependent on the 

expression of OX40 ligand and CD86 by activated NK cells (65), A role for NK cells in the 

activation of B cells and the promotion of isotype class switching has also been noted 

(66),(67),(68). The ability of NK cells to restrain the immune response has also been observed in 

a number of settings. NKG2D-dependent killing of activated T cells by syngeneic NK cells has 

been reported (69). Furthermore, expression of Qa-1–Qdm by activated CD4+ T cells is required 

to prevent lysis by NKG2A+ NK cells (70). An implication of these results is that NK cells may 
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be crucial for the termination of an immune response and consequently prevent the 

development of immunopathology. 

Direct evidence for this proposition comes from studies of mice deficient in either perforin or 

granzymes. Replication of MCMV is enhanced in mice deficient in either perforin or granzymes 

AB (71). However, granzyme ABdeficient mice survive infection while perforin-deficient mice 

develop a fatal haemophagocytic lymphohistiocytosislike syndrome (71). The haemophagocytic 

lymphohistiocytosis-like syndrome observed in perforin-deficient mice was induced by the 

accumulation of TNF-a producing CD11b+F4/80+ mononuclear cells and T cells (71). In wild-

type mice NK cells were found to prevent immunopathology by eliminating the TNF-producing 

cells in a perforin-dependant manner. A protective role of NK cells has also been reported in 

autoimmune diseases. In Fas-deficient mice, NK cells can suppress autoreactive B lymphocytes, 

while NK-cell depletion increases the severity of an autoimmune disease with features similar 

to those of systemic lupus erythematosus (72). NK cells have also been shown to play a 

protective role in diabetes; treatment of NOD mice with CFA prevented the disease in an NK-

cell-dependent manner (73). Collectively, the available data indicate that NK cells serve a dual 

purpose in that they can provide help and promote the initiation of an immune response, but 

can also curb the activity of immune effectors and thereby prevent immunemediated damage to 

the host. 

10. Natural killer cells and immunoregulation 
 

The ability of NK cells to kill cells and release immunomodulatory cytokines and chemokines 
allows NK cells to modulate the innate immune response and mold the development of the 
adaptive immune response. For example, human NK cells promote dendritic cell (DC) 
maturation and DC production of cytokines such as TNFα and IL-12 (74),(45),(55). Interestingly, 
NK cells can kill immature DCs, while mature DCs are resistant to killing as a result of their 
upregulation of MHC class I molecules (40),(75). Cytokine-activated human NK cells can also 
directly kill both activated macrophages (76), and T cells (77),(78), secondary to the 
upregulation of NKG2D ligands on these cells. NK cells are also able to provide costimulatory 
signals for CD4 T cells and augment their proliferation (79). Additionally, NK cell-derived 
cytokines (including IFNγ and IL-10 (80),(81),(82), infl uence the diff erentiation (51),(52), and 
the proliferation of CD4 T cells (82).  Impaired NK cell functional responses are frequently 
observed in patients with autoimmune disorders (discussed below). Th e importance of NK cell 
cytolytic function in immunoregulation is highlighted in hemophago cytic lymphohistiocytosis, 
a life-threatening disorder with uncontrolled immune activation and excessive T-cell 
production of cytokines leading to unrelenting phagocyte activation. Th is disorder results from 
a failure of cytolytic lympho cytes (CD8 T cells and NK cells) to kill infected cells and/or 
persistently activated T cells (83),(84). Patients with hemophagocytic lymphohistio cytosis 
uniformly have decreased NK cell cytolytic responses. Mutations in several proteins required 
for cytolytic granule release or function have been identifi ed in hemophagocytic lympho 
histiocytosis, including perforin, MUNC13-4, syntaxin 11, and syntaxin binding protein 2 
(STXBP2) (83),(84). Mutations in STXBP2 directly implicate defective NK cell cytolysis in this 
disorder since STXBP2 expression is substantially higher in NK cells than in CD8 T cells and 
defects in degranulation have been observed in STXBP2-defi cient NK cells but not in STXBP2-
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defi cient CD8 T cells (85). As illustrated by hemophago cytic lymphohistiocytosis, NK cell 
functional responses must be carefully regulated to prevent damage to normal tissues or 
dysregulation of the adaptive immune res ponses (for example, dsyfunctional cytolysis 
resulting in persistent T-cell and macrophage activation or indiscriminate release of IFNγ 
resulting in inappropriate immune activation). 
 

11. NK cell development 

 
NK cells develop from a common lymphoid progenitor resident in the bone marrow but 
diverge from other lymphocyte lineages fairly early in development (86). They require c-KIT, 
FLT-3 and IL-15 and acquire specific cell surface markers as they progress through their 
developmental stages(87).  It is currently not known whether there is a defined selection process 
analogous to thymic selection of T cells. A useful and unique setting for evaluating this 
particular question has been hematopoietic stem cell transplantation (HSCT) (88),, where the 
requirements and effects of specific receptor ligand matches and interactions have 
demonstrated a possible process of NK cell selection (see below). Insight into human NK cell 
biology was gained from studying patients with severe combined immunodeficiencies. 
Mutations of the common gamma chain (gc), required for the function of IL-2, IL-4, IL-7, IL-9, 
IL-15 and IL-21, result in failure of both T and NK cell development. Similarly, mutations of 
Janus kinase-3 (JAK3) utilized by the gc result in failure of T and NK cell development. In 
contrast, humans with an IL-7Ra mutation are T cell deficient, but NK cell replete (89), 
demonstrating that IL-7-is not necessary for NK cell development. Some mutations of gc 
prevent T cell development but allow NK cell development (90).. For example, the A156V gc 
mutation results in an inhibition of IL-4 and IL-7 function but has no effect on IL-15 response. 
This result suggests that IL-15 is necessary for human NK cell development (91), a conclusion 
confirmed by IL-15 knockout mice (92). The significance of IL-15 is further illustrated by the 
description of a patient with absent expression of IL-15Rh chain who had no NK cells (93). Once 
NK cells have developed within the bone marrow, they exit and circulate in the peripheral 
blood where they comprise 5–20% of peripheral blood lymphocytes. The percentage of NK cells 
in the peripheral blood varies with age (94),(95). The proportion of NK cells in the peripheral 
blood is high at birth (20% on average) but reaches a nadir between 5 and 9 months of age (5% 
on average) after which it climbs steadily until late adolescence (95). NK cells can be 
demonstrated in several organs including the liver, lung, spleen and uterusIn contrast, NK cells 
are relatively scarce in the lymphatic fluid and in lymph nodes. Upon stimulation, however, NK 
cells rapidly home to, and accumulate in, the draining lymph nodes (96).  
 

12. NK cell inhibitory receptors  
 

NK cell inhibitory receptors maintain an inactive state within NK cells through the recognition 
of constitutively expressed “self- molecules” on potential target cells. There are three major 
types of inhibitory receptors: killer immunoglobulin receptors (KIRs), CD94/NKG2A, Ly49 and 
Siglecs. Most NK cell inhibitory receptors have immunoreceptor tyrosine-based inhibition 
motifs (ITIMs) located within their cytoplasmic tails.  Most KIRs are inhibitory, in that their 
recognition of the major histocompatibility complex (MHC) suppresses the cytotoxic activity of 
their NK cell. KIRs (15 genes) are encoded in the leukocyte receptor complex (LRC) on human 
chromosome 19q13.4 where other Ig-like receptors are also encoded. Their nomenclature is 
based on whether the receptor has two or three Ig-like external domains (KIR2D or KIR3D) with 
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short (S; without ITIM) or long (L; with one or two ITIM sequences) cytoplasmic domains (97). 
The S forms are activating receptors associated with DAP12 (immunoreceptor tyrosine based 
activation motif, ITAM, positive adapter molecule), whereas L forms are inhibitory receptors 
that contain ITIMs. Different KIRs have different specificity for HLAs. KIR2DL1 (CD158a) and 
KIR2DL2 (CD158b) are both specific for HLA-C; whereas, KIR3DL1 (originally called NKB1) 
and KIR3DL2 (previously named P140) are specific for HLA-Bw4 and HLA-A, respectively.  
CD94/NKG2A  CD94/NKG2A is a family of C-type lectin receptors that are expressed 
predominantly on the surface of NK cells and a subset of CD8+ T-lymphocyte. The CD9/NKG2 
family includes seven members: NKG2A, B, C, D, E, F and H. Genes encoding these receptors 
are clustered in the natural killer complex (NKC) on human chromosome 12 and mouse 
chromosome 6 together with Clr (C-lectin related) genes. CD94/NKG2A is capable of being 
either inhibitory or activating depending on the members of the complex.  NKG2 receptors are 
transmembrane type II and specifically dimerize with the CD94 molecule to form heterodimers. 
CD94 contains a short cytoplasmic domain and it is responsible for signal transduction. 
Receptors of the CD94/NKG2 family bind non classical MHC class I glycoproteins (HLA-E in 
human and Qa-1 molecules in the mouse).  
 

12.1. Ly49, Siglecs and other NK cell receptors  

 

The Ly49 is an NK cell receptor more prominent in mice than in humans. The Ly49 family of 
genes is encoded in the NKC on mouse chromosome 6. The Ly49a receptor was originally 
identified on a mouse T cell tumor cell  (98). Ly49b recognizes MHC class I molecules H-2Dd, 
H-2Dk and H-2Dp and Ly49c binds to H-2Kb.  Non classical inhibitory receptors, include the 
LILR family of genes (also called LIR, ILT and CD85) and the CD33-related sialic acid binding 
Ig-like lectins (CD33rSiglecs); in particular human CD33rSiglec-7 (p75, adhesion inhibitory 
receptor 1 or AIRM1)(99),(100). Only one of the LILR genes, LILB1 (ILT2/LIR1), encodes an 
inhibitory receptor on NK cells. LILB1 expression is variable on peripheral NK cells, ranging 
from negligible to about 75% (101),(102),(103),(104),(105).  These receptors (regardless of MHC 
restriction) have inhibitory motifs (ITIMs) in their cytoplasmic domains which blunt activation 
signals. CD33-related Siglecs are largely inhibitory and widely expressed on human and mouse 
NK cells, dendritic cells, neutrophils, monocytes, eosinophils, basophils and B cells (106). There 
are ten human CD33-related Siglecs: Siglec-3 (CD33), Siglec-5 (CD170), Siglec-6 (CD327), Siglec-
7 (CD328), Siglec-8, Siglec-9 (CD329), Siglec-10, Siglec-11, Siglec-14 and Siglec-16. In contrast, 
mice have five CD33-related Siglecs: Siglec-3 (CD33), Siglec-E, Siglec-F, Siglec-G and Siglec-H 
(107),(108).  
 

12.2. NK cell activating receptors  

 

NK cells also express a variety of activating receptors which can be grouped into several 
categories. The main activating receptor groups on NK cells include CD16, NKR-P1 (NK1.1, 
CD161), NKG2D (KLRK1, CD314), NCR (NKp30, NKp44, NKp46, NKp80); and activating 
isoforms of human KIRs. These molecules function as activating receptors because they lack 
ITIMs and instead have ITAM positive adaptor molecules (DAP12). The first and best 
characterized activating receptor identified on NK cells is CD16, a low affinity Fc receptor for 
IgG (FcgammaRIII)  (109). NK cells can mediate antibody-dependent cellular cytotoxicity 
through FcgammaRIII, which binds the Fc portion of IgG coating a target (110). Although there 
are several Fc receptors for IgG, NK cells express only FcgammaRIII. In addition, despite their 
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ability to initiate antibody-dependent cell-mediated cytotoxicity (ADCC), CD16-CD3- human 
NK cells can still mediate natural killing (111).  

12.3. NKR-P1 (NK1.1 and CD161)  

 

NKRP1 (Kirb1) belongs to a family of lectin like molecules with type II orientation encoded in 
mice (NK1.1) (112),(113). Its expression is relatively selective for NK cells. NKR-P1A or CD161 is 
classified as a type II membrane protein because it has an external C terminus. NKR-P1A, the 
receptor encoded by the KLRB1 gene, recognizes lectin like transcript-1 (LLT1) as a functional 
ligand. In humans, there is only a single gene (NKRP1A) expressed on a subpopulation of NK 
cells. 

12.4. NKG2D (KLRK1 and CD314)  

 

The NKG2D receptor binds to ligands structurally homologous to MHC class I (e.g. human 
ligands MICA, MICB and mouse ligands RAE-1alpha, RAE-1beta (114). NKG2D is expressed as 
a disulfide-linked homodimer on all human and mouse NK cells. It is distinct from other NKG2 
molecules in that it shares very little homology (28% instead of 70%) and does not hetero-
dimerize with CD94. In both mice and humans NKG2D expression is not restricted to NK cells. 
In humans it is also found on gamma delta TCR+ T cells and CD8+ T cells. In mice it is found on 
most NKT cells and on activated CD8+ T cells (Bauer et al. 1999). NKG2D does not have a 
cytoplasmic motif and preferentially associates with the signaling chain DAP10 via an YxxM 
motif for recruitment of PI3K (115), suggesting that NKG2D, when associated with DAP10 acts 
as a co-stimulatory molecule. In mice, there are two isoforms of NKG2D, a long form (NKG2D-
L) and a short form (NKG2D-S). Although both forms are present on resting NK cells, the 
longer form is predominately expressed and preferentially associates with DAP10. Other NK 
activation receptors of NKG2 are heterodimeric NKG2A-CD94 and NKG2E-CD94 (116).   

 

12.5. NCR (NKp30, NKp44, NKp46)  

 

NCRs are type I TM receptors that, unlike T cell receptors (TCRs) and immunoglobulins, do not 
undergo recombination in order to become functionally active. NCRs possess ITAMs which 
activate NK cells while NKp44 also has an ITIM. Originally identified as receptors with the 
ability to mediate the killing of tumor-transformed cells NCRs have also been implicated in the 
control and elimination of several pathogens (117). NCRs also have a role in immune 
homeostatis by regulating the expression of several immune cell types. The ligands for these 
receptors include self-derived molecules as well as pathogen components (118).  

 

12.6. Adhesion receptors  

 

For NK cells to efficiently carry out their effector functions, they must be able to migrate to the 
site of injury. Adhesion receptors are a key group of molecules that contribute to this function, 
by increasing their levels of expression.  
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13. Mechanisms of action of NK cells  

 

NK cells can lyze virally infected cells and tumor cells without prior sensitization. This lysis or 
cytolytic function is controlled by inhibitory NK receptors that specifically bind to MHC (HLA) 
molecules on healthy cells and NK cell activation receptors that detect stressed cells. When 
MHC class I molecules are down regulated or lost on tumor cells or in viral infections, 
inhibitory signals from inhibitory receptors are lost resulting in NK cell activation. This is called 
“missing-self” triggered NK activation. NK cell activation receptors (e.g. NKG2D) can detect 
self-molecules up regulated at higher levels on damaged cells. This is called “stress-induced 
self- recognition.” Cell surface receptors control inhibition and activation; proliferation and 
effector functions (cytotoxicity and cytokine production) (119),(86).  Once activated by NK cell 
receptors NK cells can use several methods to exert their cytotoxic effects. These include 
cytolytic granule mediated cell apoptosis and ADCC. When activated by cytokines or 
interferons NK cells secrete interferon gamma and TNF alpha which promote phagocytosis. 
 

14. NK cells and adaptive immunity  

 
The ability to generate memory cells following a primary infection and the consequent rapid 
immune activation and response to succeeding infections by the same antigen is fundamental to 
the role T and B cells play in the adaptive immune response. For many years, NK cells have 
been considered to be a part of the innate immune system. However, recently, increasing 
evidence suggests that NK cells can display several features that are usually attributed to 
adaptive immune cells (e.g. T cell responses) such as expansion and contraction of subsets, 
increased longevity and a form of immunological memory, characterized by a more potent 
response upon secondary challenge with the same antigen.  The role of NK cells in both the 
innate and adaptive immune responses is becoming increasingly important in both basic 
research and targeted drug development. 
 

15. Therapeutic Applications of NK Cells in various disease Conditions  

NK cells play a crucial role in attacking tumor cells in our bodies, and are considered a 
promising tool for cancer therapy. Treatment range over the past two decades has included IL-2 
administration to activate the endogenous NK cells or to adoptively transfer IL-2 activated NK 
cells (120),(121),(122),(123),(124). Autologous NK-cell therapy has been experimented on for the 
treatment of renal cell carcinoma, malignant glioma, and metastatic breast cancer. However, it 
was soon recognized that autologous adoptive NK-cell therapy may have certain drawbacks 
and thus may not be efficacious. The drawback is mostly attributed to the inhibition of NK cells 
by self-MHC I molecules expressed on the tumor cells. This has led to the use of allogeneic NK 
cell therapy in trials. In a pioneering study, Ruggeri et al. demonstrated that alloreactive NK 
cells given to patients with acute myelogenous leukemia (AML) could eliminate relapse, graft 
rejection, and protect them against graft-vs-host disease (GvHD) (125).  Later, adoptive cellular 
transfer of allogeneic NK cells from haploidentical donors was also attempted for treatment of 
renal cell carcinoma, metastatic melanoma, refractory Hodgkin’s disease, and refractory 
AML.(126). They were also found to be useful against several solid tumors such as 
neuroblastoma, renal, colon, gastric, and ovarian cancers,(127),(128). The trials concluded that 
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NK-cell transfer was safe and efficacious. Similar trials were also conducted recently in patients 
with recurrent metastatic breast and ovarian cancer (129). The allogeneic NK cells have the 
advantage of being derived from healthy donors and have more cytotoxic activity. Moreover, 
NK cells do not induce GvHD, unlike T cells. As discussed in the earlier section, the role of NK 
cells has been established not only in cancer but also in various other disease conditions. 
Adoptive NK cell therapy can thus be explored for diseases such as asthma, multiple sclerosis, 
diabetes, arthritis, etc. The effectiveness of NK cells in controlling HIV-1 infection has already 
been demonstrated in in vitro and in vivo experiments. NK cell therapy can be applied to 
patients who are refractory tostandard highly active antiretroviral therapy (HAART). Besides 
the option of using NK cells for adoptive transfers, understanding the role of NK cells and their 
receptors can open up other strategies to treat diseases. For example, during the developmental 
stages of Type 1 diabetes, the activation of NK cells can be prevented by the administration of 
specific antibodies for blocking the NKp46 activation receptor. Similarly, in rheumatoid arthritis 
where the role of NK cells can possibly be protective or disease-enhancing, therapy can be 
considered accordingly. Inhibitory receptor NKG2A can be blocked, which will stimulate NK 
cells and thus control the disease. Where NK cells enhance the disease condition, the blocking of 
RANKL (receptor activator of NFKB ligand) and M-CSF (macrophage colony-stimulating 
factor), factors which mediate osteoclastogenesis and bone destruction, can help (130). 
For the purpose of therapeutic applications, allogeneic NK cells can be sourced from umbilical 
cord blood (UCB), adult donor lymphapheresis products, or even from NK-cell lines such as 
NK-92. Recently, studies have shown successful in vitro derivation of functional NK cells from 
human embryonic stem cell (hESC) and induced pluripotent stem cell (iPSC) (131),(132),(133).. 
hESC and iPSC-derived NK cells have demonstrated potent anti-tumorigenic and anti HIV 
activity, and are phenotypically similar to those of peripheral blood origin. Moreover, they are 
considered superior to UCB-derived NK cells because they have higher levels of KIR 
expression, thus making them more potent. Pluripotent cell-derived NK cells can therefore be 
an unlimited source for the adoptive transfer of NK cells to treat a range of diseases. 
However, safety of hESC and iPSC-derived NK cells in terms of potential tumorigenicity needs 
to be determined before they can be utilized in the clinical set up. The application of NK cells as 
immunotherapeutic agent requires several technical developments. NK cells need to be isolated 
and expanded in sufficient numbers for them to act as effector cells. Moreover, the activity of 
NK cells needs to be enhanced for better efficacy. Expansion of NK cells has been attempted 
using cytokines such as IL-2 and IL-15 (134),(135). These two cytokines can also help increase 
the survivability of the NK cells (136). IL-2 is also thought to potentiate the cytotoxic ability of 
NK cells. Co-culturing NK cells with accessory cells such as irradiated Epstein Barr Virus (EBV) 
transformed lymphoblastoid cells, HFWT (a Wilm’s tumor derived cell line), and K562 has been 
reported to enhance NK cell proliferation (137),(138),(139). Activation of NK cells can be 
achieved by various genetic engineering techniques to augment activating signals and also to 
downregulate inhibitory signals  (140),(141),(142),(143),(144). Similarly, the specificity of NK 
cells can be increased through genetic modification approaches such as the use of chimeric 
antigen receptors (CARs) (145),(146),(147).  

 
16. Conclusion 

 
NK cells exert their biological activity by a triad of functions: cytotoxicity, cytokine secretion 

and co-stimulation. NK cells need to be evaluated whenever an autoimmunity, 
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immunocompetency or immunodeficiency investigation is undertaken. The expanding 

characterization of the biological roles of KIR hints at yet undiscovered roles for NK cells in 

health maintenance. Since NK cell–DC cross-talk clearly influences innate immune responses 

and can also impact on adaptive immunity, a better understanding of the mechanisms involved 

is critical and necessary if the ultimate aim is to develop protocols that will provide better 

immunity following vaccination, cancer immunotherapy and in transplantation settings. 
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